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A theoretical study on the application of the first cycle of alternating current to cylindrical micro-
electrodes is presented. The analytical expressions obtained here are applicable to electrodes with
radii of up to 50 µm, which are in the range of “large” microelectrodes. A method for determination
of the kinetic parameter ks independently of α and methods for calculation of E0 are proposed.
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In recent papers we have discussed the advantages of the application of a low fre-
quency alternating current to planar and spherical electrodes. Similarly, as in current
reversal chronopotentiometry, both the direct and the inverse charge transfer pro-
cesses1,2 can be studied simultaneously. However, in relation to current reversal chro-
nopotentiometry, there are two additional advantages:

From a practical point of view, the effect of the charge current is diminished using
sinusoidal current compared to constant current. This is due to the fact that the poten-
tial–time curves obtained in the first case are less steep both at the beginning of the
chronopotentiogram and at the change of the current sign.

From a theoretical point of view, given the continuity with time of the sine function,
the mathematical solution of this problem is simpler than in the case of two successive
current steps.

In this work we extend the discussion to the case of cylindrical electrodes which
have been employed extensively because of their simple fabrication. The first studies in
chronopotentiometry at cylindrical electrodes were carried out by Rius et al.3 who es-
tablished the theoretical principles from which Peters and Lingane derived their equation
for the transition time in constant current chronopotentiometry4. Later studies on this
subject have been extended to the theory of small radius electrodes but, as far as we know,
only current step and some power of time perturbations have been considered5–8.

In this paper we describe the theory of chronopotentiometry with alternating currents
I(t) = I0 sin (wt) and I(t) = I0 cos (wt) at cylindrical electrodes. We have derived general
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equations for transition times of oxidized and reduced species and for potential–time
curves. From these expressions we deduce, as particular cases, expressions for stationary
planar electrodes and also for the application of a current step. These equations are
coincident with those in literature1,7.

In order to evaluate the range of applicability of our equations, we have studied
simultaneously the behaviour of the surface concentrations of species involved in the
charge transfer reaction by digital simulation9. From our results we conclude that the
analytical expressions are applicable to electrodes with radii of up to 50 µm, which are
in the range of “large” microelectrodes10.

Finally, particular features of the potential–time and current–potential curves are dis-
cussed. We also propose methods for the calculation of kinetic and thermodynamic
parameters of the charge transfer reactions. The calculation is simplified for electrodes
with small radii since the magnitude of the capacity component of the current is re-
duced11 with respect to its faradaic component.

THEORETICAL

Let us consider the charge transfer reaction

A + n e            B  . (A)

When an alternating current I j(t) (j can be either s or c) of the form

Is(t) = I0 sin (wt) (1)

Ic(t) = I0 cos (wt) (2)

is applied to a cylindrical electrode, the following initial and boundary conditions are
valid

D
^

ACA = D
^

BCB = 0 (3)





t = 0 ,   r ≥ r0

t > 0 ,    r→∞



   CA = CA

∗  ,   CB = CB
∗ (4)

kf

kb
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t > 0 ,  r = r0 :

DA 




∂CA

∂r



r=r0

 = −DB 




∂CB

∂r



r=r0

 = 
I j(t)
nFA

(5)

I j(t)
nFA

 = kfCA(r0,t) − kbCB(r0,t)  , (6)

where the cylindrical diffusion operator is given by

D
^

i = 
∂
∂t

 − Di 




∂2

∂r2 + 
1
r
 
∂
∂r




  . (7)

By using the dimensionless parameters method12, we obtain the following ex-
pressions for the surface concentrations of species A and B

CA(r0,t)
CA

∗  = 1 − NAt1/2Qj(ξA,Ω) (8)

CB(r0,t)
CA

∗  = µ + γNAt1/2Qj(ξB,Ω)  , (9)

where

NA = 
2I0

nFADA
1/2CA

∗ (10)

ξi = 
2(Dit)1/2

r0
(11)

Ω = wt (12)

µ = CB
∗ /CA

∗ (13)

γ = 




DA

DB





1/2

(14)
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and Qj (ξi,Ω) ( i can be either A or B) is a functional series which has the form

Qs(ξi,Ω) = ∑ 
k=0

∞
(−1)kΩ2k+1

(2k + 1)!  λs(ξi) (15)

λs(ξi) = 
p4k+2

2(4k + 3) − ξi 
1

4(4k + 4) + ξi
2 

3p4k+2

32(4k + 3) (4k + 5) − 

−ξi
3 

3
32(4k + 4) (4k + 6) + ξi

4 
63p4k+2

1 024(4k + 3) (4k + 5) (4k + 7) − 

− ξi
5 

27
256(4k + 4) (4k + 6) (4k + 8) + ξi

6 
1 899 p4k+2

16 384(4k + 3) (4k + 5) (4k + 7) (4k + 9) − … (16)

Qc(ξi,Ω) = ∑ 
k=0

∞
(−1)kΩ2k

(2k)!  λc(ξi) (17)

λc(ξi) = 
p4k

2(4k + 1) − ξi 
1

4(4k + 2) + ξi
2 

3p4k

32(4k + 1) (4k + 3) − 

−ξi
3 

3
32(4k + 2) (4k + 4) + ξi

4 
63p4k

1 024(4k + 1) (4k + 3) (4k + 5) − 

− ξi
5 

27
256(4k + 2) (4k + 4) (4k + 6) + ξi

6 
1 899p4k

16 384(4k + 1) (4k + 3) (4k + 5) (4k + 7) − … (18)

The transition time τA of species A can be reached for cathodic values of the alternat-
ing current during its first cycle. From Eq. (8) for CA (r0,τA) = 0 we have

τA
1/2 = 

1
NAQj(ξA,τA

,ΩτA
)  . (19)

If the transition time of the oxidized species is reached, the experiment must be
stopped. Under these conditions, the use of an alternating current is not substantially
different from other current–time functions1. However, there are values of NA or I0, Eq. (10),
for which species A remains undepleted at the electrode surface. In this case the transi-
tion time τB of species B can be obtained after a change of sign of the current as long
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as CB
∗  is lower than a predetermined value1,2. The condition for the transition time τB,

CB(r0, τB) = 0, transforms Eq. (9) into

τB
1/2 = − 

µ
γNAQj(ξB,τB

,ΩτB
)  , (20)

where ξi,τi
 and Ωτi

 are the values of ξi and Ω in Eqs (19) and (20), respectively, for t = τi.
From Eq. (9) it can be deduced that τB is independent of NA if B is not initially present
in solution.

If neither τA nor τB is reached during the first cycle of the alternating current, the
potential–time (E–t) response shows oscillations around E0. A more detailed discussion
on transition times can be found in refs1,2.

Inserting Eqs (8) and (9) into Eq. (6), we obtain the following expression for the
potential–time function

I j(t)
I0

 NA 
DA

1/2

2ks
 eαη(t) = 1 − NAt1/2Qj(ξA,Ω) − eη(t) [µ + γNAt1/2Qj(ξB,Ω)]  , (21)

where

η(t) = 
nF
RT

 [E(t) − E0]  . (22)

For a reversible process (kS → ∞), Eq. (21) becomes

E(t) = E0 + 
RT
nF

 ln 
1 − NAt1/2Qj(ξA,Ω)
µ + γNAt1/2Qj(ξB,Ω)

  . (23)

In the case of a totally irreversible process (ks << 1 cm s–1), there are following two
possibilities:

1. For a cathodic current (I j(t) > 0), Eq. (21) has the form

E(t) = E0 + 
RT

αnF
 ln (nFACA

∗ kS) + 
RT

αnF
 ln Mj

cath (24)

Mj
cath = 

1 − NAt1/2Qj(ξA,Ω)
Ij(t)

  . (25)

2. For an anodic current (I j(t) < 0), Eq. (21) is simplified to
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E(t) = E0 − 
RT

(1 − α)nF
 ln (nFACA

∗ ks) + 
RT

(1 − α)nF
 ln Mj

anod (26)

Mj
anod = 

−I j(t)
µ + γNAt1/2Qj(ξB,Ω)

  . (27)

Special Cases

Planar Electrode

The equations obtained for a cylindrical electrode can be transformed into those corres-
ponding to a planar electrode by setting ξi = 0 (r0→∞, Eq. (11)) in expressions (8), (9)
and (21). Then Eqs (15) and (17) can be simplified to

Qs,p(Ω) = ∑ 
k=0

∞
(−1)kΩ2k+1

(2k + 1)! p4k+3
(28)

Qc,p(Ω) = ∑ 
k=0

∞
(−1)kΩ2k

(2k)! p4k+1
  . (29)

Constant Current

Equations corresponding to this case can be obtained by setting k = 0 in the series
Qc(ξi,Ω). Thus, Eq. (17) is simplified to the form which is in agreement with refs3–7.

Qc(ξi) = λc(ξi) = 
1

π1/2 − 
1
8

 ξi + 
1

16π1/2 ξi
2 − 

3
256

 ξi
3 + 

 + 
21

2 560π1/2 ξi
4 − 

9
4 096

 ξi
5 + 

633
286 720π1/2 ξi

6 − …  . (30)

RESULTS AND DISCUSSION

In order to establish the validity range of Qj (ξi,Ω) in Eqs (15) and (17), we have carried
out a parallel study of process (A) using digital simulation by the Crank–Nicolson
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method with the implicit calculation of boundary values (surface concentration)9. In
Fig. 1 the dependence of the surface concentration of B on ξB is shown for different
angular frequencies w, obtained from Eq. (9) and by digital simulation. Both proce-
dures are in a very good agreement under the conditions of Fig. 1. For alternating
current with amplitude I0, this agreement improves with decreasing w (Eq. (1), Fig. 1a) and
with increasing w for an alternating current given by Eq. (2), Fig. 1b. From these plots
it is evident that in the case of chronopotentiometry with alternating current our equa-
tions are valid for “large” microelectrodes. Indeed, the maximum time of the experiment is
closely related to the electrode radius by Eq. (11). Therefore, for Di = 10–5 cm2 s–1 if the
time does not exceed 2.5 s, the radius of the electrode can have a value of 0.005 cm (ξi = 2).
Obviously, the radius can be smaller if the electrolysis time decreases.

In Fig. 2 we have plotted the E–t curves for a reversible process and several values
of NA when there is a transition time for species B and a small cylindrical electrode of
0.005 cm radius is used. These curves intersect at the point corresponding to the poten-
tial ER defined by Eq. (31) for DA = DB (γ = 1) (see Eq. (23) with Qj(ξi,Ω) = 0)

ER = E0 + 
RT
nF

 ln 
1
µ  . (31)

This type of plot can be used to estimate E0 from Eq. (31). In the case of planar elec-
trodes, the point of intersection exists even at γ ≠ 1. Obviously, ER is defined only if
species B is initially present in solution.

FIG. 1
Variation of surface concentration of species B with parameter ξB obtained from Eq. (9) (−−−−−) and by
digital simulation (. . . .). a The alternating current applied is given by Eq. (1); γ = 1, DB = 10–5 cm2 s–1,
NA = 1 s–1/2, µ = 1, r0 = 0.005 cm. The values of w: 1 0.2, 2 1, 3 2 s–1. b The alternating current
applied is given by Eq. (2). NA = 0.5 s–1/2. The values of w: 1 0 (current step), 2 1, 3 2 s–1. Other
conditions as in 1a
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Figure 3 corresponds to a process with ks = 10–4 cm s–1. We have plotted the chrono-
potentiograms for three values of α for a small cylindrical electrode of 0.007 cm radius
and for the species B initially absent in the solution (µ = 0). In this case we can observe
other points of intersection:

The point III corresponds to the values of tc and Ec on coordinates. Here tc is the time
at which the alternating current I j (tc) = 0, and Ec is the zero-current potential which
does not depend on the kinetic parameters of the process13. It can be derived from Eqs (21)
or (23) in the form

Ec = E0 + 
RT
nF

 ln 
1 − NAtc

1/2Qj(ξA,tc
,Ωtc

)

µ + γNAtc
1/2Qj(ξB,tc

,Ωtc
)
  , (32)

 600

 400

 300

 200

 100

   0

–100
0         t1           2          t2       tc 4                       6

E(t)–E0

mV

3

2

1

t, s

I II

III

FIG. 3
Influence of α on E–t curves for ks = 10–4 cm s–1

(Eq. (21)). The alternating current applied is
given by Eq. (1), DA = 8 . 10–6 cm2 s–1, DB =
10–5 cm2 s–1, w = 0.85 s–1, NA = 0.1 s–1/2, µ = 0,
r0 = 0.007 cm. The values of α: 1 0.2, 2 0.4,
3 0.7. Other conditions are the same as in
Fig. 2, description of t1, t2, tc and I–III in text

150

100

 50

  0

–50
0.0                   0.5                    1.0                    1.5

E(t)–E0

mV

1

2

3

t, s

FIG. 2
Potential–time (E–t), plot for a reversible pro-
cess (Eq. (23)). The alternating current ap-
plied is given by Eq. (2). T = 298 K, n = 1,
DA = DB = 10–5 cm2 s–1, w = 2 s–1, µ = 0.07,
r0 = 0.005 cm. The values of NA: 1 0.5, 2 1,
3 3 s–1/2
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where ξi,tc
 and Ωtc are the values of the parameters ξi and Ω for t = tc. Figure 3 presents

two other points of intersection (at t1 and at t2). In both cases E(t1) = E(t2) = E0. Values
of t1 and t2 have the advantage of being independent of α, but they depend on ks as
follows from Eqs (21) and (22).

With respect to this feature, it is convenient to construct curves such as those shown
in Fig. 4, where we present the variation of t1 (curves I) and t2 (curves II) with log ks for
several values of NA. Therefore, from points III, I and/or II it is possible to determine
the values of E0 and ks. For a specific chronopotentiogram we can proceed in three
steps.

1. As the time tc corresponding to a zero current is obtained from Eq. (1) or (2), the
corresponding Ec value can be measured and, from Eq. (32), the value of E0 can be
obtained.

2. Once E0 is known, curves of the type shown in Fig. 4 can be used to estimate the
value of ks. One can obtain values of ks for a wide range of this experimental variable
simply by changing the experimental conditions.

3. After E0 and ks were determined, the value of α at any point of the curve can be
obtained from Eq. (21).

For a totally irreversible process, the E–t response is noticeably simplified (Eqs (24)
and (26)). In this case parameters α, ks and E0 can be obtained by plotting E(t) against
ln Mj

cath and E(t) against ln Mj
anod, refs1,2.

Figure 5 shows effects exerted by an initial concentration of species B, through the
parameter µ = CB

∗ /CA
∗ , on the E–t curves plotted for ks = 5 . 10–5 cm s–1 (1) and ks =

2 . 10–6 cm s–1 (2). From curves (I) we notice that τB exists when µ = 0. There is no
transition time either for species A or species B if µ = 1, curves (II). In this case, µ >  µlim

(refs1,2). Also, the cathodic branch of the curves becomes independent of µ with de-
creasing ks as corresponds to a totally irreversible process in agreement with Eq. (24).

4

2

0

–5                 –4              –3               –2               –1

t, s

log ks

I

4

3
2

1

4

II

FIG. 4
Variation of t = t1, curves I and t = t2, curves
II with log ks ( in cm s–1), DA = 10–5 cm2 s–1,
α = 0.5. The values of NA: 1 0.1, 2 0.5, 3
0.7, 4 1 s–1/2. Other conditions as in Fig. 3
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Figure 6 shows the i(t)–E(t) plot, where i(t) = I j(t)/I0, for a complete cycle of the sine
function (when τB does not exist) for various values of ks. The zero-current potential Ec

corresponds to the intercept of the right-hand branch of each curve with the zero-cur-
rent line. The value of kinetic parameters can be obtained from the difference between
the potential EM corresponding to imax and the potential Em corresponding to imin where

imax = 1            for  tM = 
π

2w
(33)

imin = −1          for  tm = 
3π
2w

(34)

 1

 0

–1
              300                  0                  –300

i(t)

E(t)–E0, mV

4          3          2         1

1         2      3           4

FIG. 6
Influence of ks on i–E curves according to Eq.
(21) (no transition time for A and B). DA =
10–5 cm2 s–1, w = 2 s–1, NA = 1 s–1/2, µ = 0.5,
r0 = 0.01 cm, α = 0.5. The values of ks: 1 1 . 103,
2 1 . 10–4, 3 5 . 10–5, 4 2 . 10–6 cm s–1. Other
conditions as in Fig. 3
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FIG. 5
Dependence of E–t curves on µ, for ks = 5 .
10–5 cm s–1 (1) and ks = 2 . 10–6 cm s–1 (2);
DA = 10–5 cm2 s–1, w = 0.8 s–1, r0 = 0.05 cm,
α = 0.5; I µ = 0, II µ = 1. Other conditions as
in Fig. 3
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∆Em
M = EM − Em  . (35)

It is possible to determine α and ks from ∆Em
M−log ks plot using a procedure similar to

that described in ref.2.
From Figs 2, 3, 5 and 6 it is apparent that both E–t and i–E curves are influenced by

ks so significantly that the degree of reversibility of the electrode process can be esti-
mated by means of simple visual inspection.
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SYMBOLS

A area of cylindrical electrode, cm2

Ci
∗ bulk concentration of species i, mol cm–3

Di diffusion coefficient of species i, cm2 s–1

Ec zero-current potential, V
E0 formal potential, V
E(t) time-dependent electrode potential, V
i(t) I j(t)/I0

I0 amplitude of the alternating current, A
I j(t) applied alternating current I0 sin (wt) for j = s or I0 cos (wt) for j = c, A
kf, kb heterogeneous rate constants of the forward (kf) and the reverse (kb) charge transfer

reaction, cm s–1

ks apparent heterogeneous rate constant of charge transfer at E0, cm s–1

NA 2I0/nFADA
1/2CA

∗ , s–1/2

px 2Γ(1 + x/2)/Γ((1 + x)/2)
r distance from the generatrix of the cylindrical electrode, cm
r0 electrode radius, cm
t time elapsed between switching on the alternating current and the measurement of the

potential, s
w angular frequency, s–1

α electron transfer coefficient
γ (DA/DB)1/2

Γ Euler gamma-function
µ CB

∗ /CA
∗

ξi 2(Dit)1/2/r0

τA transition time for reduction process, s
τB transition time for oxidation process, s
Ω wt
All other symbols have their usual meaning.
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